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Abstract. Thorium Molten Salt Reactor (TMSR-500) is one of the developments of the generation IV reactor which has various 
advantages over the type of reactor in the previous generation because it can produce high resources and long lasting. This 
reactor uses liquid salt as fuel as well as coolers and moderators made from graphite. The main fuel used is NaF-BeF2-ThF4-
UF4. Void reactivity is a very important parameter to calculate the safety level of the reactor. Voids can be formed due to 
heating the fuel to the boiling point of the fuel which causes bubbles to occur in the fuel and decreases the fuel density. This 
reported study simulates and calculates the void reactivity coefficient due to a decrease in fuel density expressed by the void 
fraction. Simulations are carried out using the MCNP6 when voids have not formed (0%), formed 10%, 20%, 30%, and 40%. 
The results of this study indicate that the TMSR-500 is a reactor that operates in the thermal energy spectrum with a temperature 
of 977K. The criticality of TMSR-500 was obtained with the value of keff = (1.01804±0.00008), and the void reactivity 
coefficient was positive at (0.068±0.003) %Δk/k/%void due to the undermoderated condition of the reactor so it was safe. 
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INTRODUCTION 

Molten Salt Reactor (MSR) or liquid salt-fueled reactors, is one of the resource technologies that are 
suiTABLE to be a renewable energy solution. Thorium Molten Salt Reactor (TMSR-500) is one of the generation IV 
reactors which has various advantages over the type of reactor in the previous generation because it can produce 
high resources, long-lasting, but lower costs. This reactor operates at high temperatures, but low pressure 
approaches atmospheric pressure [1-2]. 

The power produced by the TMSR-500 is 1000 MWe which is divided into 4 modules (in the form of pots) 
with 250Mwe each. The pot module is one of the 3 core components of the TMSR-500, the other two are the 
primary heat exchanger and the primary strand pump. Each module in it has a reactor that can be replaced in a 
closed silo can. Can contain a moderator made from graphite and salt fuel with a mixture of NaF, BeF2, ThF4, 
UF4 [3]. In this study the percentage of moles used for each fuel component was 76% / 12% / 9.8% / 2.2% with 
19.75% enrichment of U235 [4]. In the liquid salt fuel, there is graphite that plays a very important role as 
moderators for thorium-based nuclear reactors. 

One aspect of safety for nuclear reactors is void reactivity. Voids in liquid salt reactors occur due to reactor 
operations whose temperature is close to saturation temperature, causing bubbles to form on the reactor core. The 
saturation temperature is the temperature at which the vapor pressure of a liquid is equal to the pressure of the 
environment surrounding the liquid [5]. Voids in MSR can also occur due to the formation of fission products in 
the gas phase. The formation of voids also causes a reduction in fuel density. The higher the fuel temperature, the 
higher the voids in the core. The presence of voids will affect the performance of the reactor, this condition can 
be seen from the estimated value of the criticality. The reactor's criticality is expressed in terms of the magnitude 
of keff. 

This study aims to obtain the void reactivity coefficient value of the TMSR-500 as one of the aspects of reactor 
safety. The method used is a variation of the void fraction assumed with a variation of the reduction in fuel density 
by 0%, 10%, 20%, 30%, and 40%. The calculations are carried out using the MCNP6 program which works with 
the Monte Carlo method. 

The value of the void reactivity coefficient can be positive or negative depending on the nuclear system 
overmoderated or undermoderated. If undermoderated, the results of the void reactivity coefficient are positive, 
and vice versa [6]. 
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METHODOLOGY 

In this study, the core design of the TMSR-500 is based on a model from Devanney [4] using Vised software 
and version 6 of the MCNP (Monte Carlo N-Particle) program for the running process of keff. calculation. The 
TMSR-500 core consists of pots, shields, reflectors, moderators, fuels, and control rods which can be seen in 
FIGURE 1. 

 
FIGURE 1. Core of TMSR-500 

 
The core design of the TMSR-500 has 2 types of control rods, shutdown rods (which is blue) using gadolinium 

and regulating rods (the center one) using graphite. When the TMSR-500 operates the shutdown rod is in a fully-
up state, while the regulating rod is in a fully-down state. The outermost layer pot or reactor core vessel uses 
SUS316H (316H Stainless steel) material, the next layer is a shield made from B4C. The material used for 
moderators is graphite, as well as reflector materials. Liquid salt that functions as the main fuel as well as the 
coolant uses a mixture of NaF, BeF2, ThF4, and UF4 [4]. 

The geometry that has been compiled on running using a PC with 200,000 neutron histories were tracked takes 
± 20 hours for each run. The criticality of the TMSR-500 designed in this research was calculated by the MCNP6 
program. The multiplication factor of neutrons or keff from the output produced shows the criticality of the reactor 
design that has been made. For the TMSR-500, the reactor design is declared in critical condition if the value is 
1.00 < keff  <1.02 [7].  

In addition to calculating the keff value to determine the criticality of the design, validation of the geometry is 
also needed by analyzing the neutron energy spectrum on the TMSR-500. The neutron energy spectrum can be 
determined by calculating the value of the neutron flux in the fuel and moderator. To calculate the flux in cells 
from geometry, MCNP6 requires a tally flux card (F4) and an En tally card to obtain flux values in the specified 
energy range [8]. The range of neutron energy used is thermal neutron energy, epithermal neutron, and fast 
neutrons. 

Bubbles or voids can occur due to the formation of fission products in gases which causes the reduced density 
of the fuel [5]. Therefore, this study uses variations in the void fraction with assumed variations in the reduction 
in fuel density. The variation in the reduction in fuel density used is 0%, 10%, 20%, 30%, and 40% with a void 
of 0% is the value of the fuel density during normal conditions. 
The reactivity value is obtained from the value of keff with Equation 1. 

 𝜌 = ∆G%++
G%++

= G%++3*

G%++
 (1) 

where keff is a neutron multiplication factor, the output of the MCNP6 program. 
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Then for keff of each void variation, the reactivity value was calculated. From the results of the void reactivity 
can be obtained the coefficient of void reactivity using Equation 2. 

 𝛼 = XY
XZ

 (2) 

where : 
𝛼 = void reactivity coefficient 
𝜌 = reactivity 
𝜙 = void fraction 
 

RESULT AND ANALYSIS 

Based on the results of running using MCNP6 at 977K, the value of keff was obtained 1.00 < keff < 1.02. The 
keff value at 977K was obtained through the interpolation of the keff at 900K and 1200K, valued at 1.01804 ± 
0.00008. TABLE 1 displays the keff values from the simulations carried out at 900K and 1200K, and the keff 
obtained at the reactor operating temperature is 977 K. 

TABLE 1. Values of keff at 977K from interpolation between 900K and 1200K 
Temperature (K) keff 

900 1.02039±0.00008 

977 
(Interpolate) 1.01804±0.00008 

1200 1.01124±0.00009 
 

The results in TABLE 1. show that the simulation design of the TMSR-500 when operating at 977K was in a 
critical state. 

Next is the evaluation of the energy spectrum as validation for the design geometry of the TMSR-500 that has 
been made. The neutron flux calculation can be done by the MCNP program by adding an F4 tally card (flux in 
cells). Cells whose neutron flux values are calculated are fuel cells and moderators, results can be seen in TABLE 
2 where neutron energy is only divided into thermal energy and fast energy. 

TABLE 2. Neutron flux values of thermal and fast energy in fuel cells and moderators 

Position 
Neutron Flux (n.cm-2/s) 

Thermal Energy (1013) Fast Energy (1012) 
Fuel 2.0469 ± 0.0002 8.5209 ± 0.0002 

Moderator (at fuel log) 2.5648 ± 0.0002 8.4983 ± 0.0002 
Moderator (at rod log) 3.3651 ± 0.0014 8.9343 ± 0.0019 

 
TABLE 3. keff  values and reactivity change for each void fraction variation 

Void 
(%) keff Reactivity Change 

(%Δk/k) 
0 1.01804±0.00008 0 
10 1.02641±0.00008 0.00801 
20 1.03436±0.00007 0.01549 
30 1.04140±0.00007 0.02203 
40 1.04700±0.00007 0.02717 

 
Based on TABLE 2. it can be seen that the value of thermal energy flux is greater than the value of fast energy 

flux, applicable to all three positions. This proves that the TMSR-500 is a thermal reactor, which means the reactor 
operates on thermal neutron energy. The moderator made from graphite has the role of slowing down the speed 
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of neutron energy rapidly into thermal is also one of the factors why the TMSR-500 reactor is a thermal reactor 
[9]. A comparison of neutron flux values from the three positions is more clearly seen in FIGURE 2. 

On the thermal reactor core, the maximum thermal neutron flux value is in the moderator and the maximum 
fast neutron flux value is in the fuel. As the edge of the neutron flux value decreases, it gets smaller, so that the 
highest thermal flux value is in the moderator cell (at rod log), where the log is in the center of the reactor core. 
The highest fast neutron flux value is in the fuel [10]. From the data in TABLE 2, it has been proven that it is in 
accordance with the literature. 

Based on FIGURE 3, the void reactivity coefficient obtained from the data in TABLE 3 using Equation (2) 
is positive (0.068 ± 0.003) %Δk/k/%void. The value of keff from each void fraction shows that when the void 
fraction increases, the reactivity value also increases. However, the TMSR-500 is an under-moderated reactor so 
the void reactivity is positive [6]. In previous studies [11] the MSR Fuji-12 reactor also had a positive void 
reactivity value. 

 
FIGURE 2. Graph of neutron energy spectrum in the fuel and moderator of the TMSR-500 

 
FIGURE 3. Graph of void fraction versus reactivity change 

CONCLUSION 

From the results of this research, it can be concluded that the design of the TMSR-500 operating at 977K is in 
a critical condition with a keff value of (1.01804 ± 0.00008). With a graphite based moderator whose role is to 
slow the rate of neutron energy rapidly into thermal, the neutron energy spectrum of the TMSR-500 is a thermal 
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neutron spectrum. The coefficient of void reactivity obtained is positive value of (0.068 ± 0.003) %Δk/k /%void. 
Positive void reactivity is assumed to be caused by the condition of the TMSR-500 reactor which is under-
moderated, then TMSR-500 declared safe. These results can be considered for further research analyzing other 
aspects of reactor safety, such as the coefficient of temperature reactivity and engineered safety (defense in depth). 
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